TMATH 126: Quiz 1

You may use:

- any kind of calculator that cannot access the internet and
- a double-sided 3×5 " card for this quiz.

Show all your work (numerically, algebraically, or geometrically) for each and simplify. No credit is given without supporting work.

1. [6] TRUE/FALSE: Circle T in each of the following cases if the statement is always true and provide a brief justification. Otherwise, circle F and provide a counterexample.

T F Sequences are a list of numbers.
$\mathrm{T} \quad \mathrm{F}$ The recursive sequence $a_{n}=-a_{n-1}$ diverges no mater the choice of a_{1}.
2. Consider the sequence: $\left\{\frac{3}{2}, \frac{5}{4}, \frac{7}{8}, \frac{9}{16} \ldots\right\}$.
(a) (WebHW \#3) [3] Find a formula for the $n^{\text {th }}$ term where a_{1} is the first term.
(b) (§11.1 \#30) [2] Find the limit of the terms in the above sequence as $n \rightarrow \infty$, if it exists. Justify your work!
3. [2] Create a sequence that does not converge.
4. [3] (WebHW2 \#8) Determine if the following sequences converge or diverge. If it converges, find the limit.
$a_{n}=\tan \left(\frac{2 \pi n}{7-12 n}\right)$
5. (Summer '11 Quiz 1\#4)

Consider the recursively defined sequence $a_{n}=\frac{1}{2}^{a_{n-1}}+1$.
(a) [1] If $a_{1}=-1$, write down the first three terms of the sequence.

(b) [2] If $a_{1}=-1$, does the sequence converge?
If the sequence does converge, identify the limit on the graph.
(c) [1] What values can a_{1} be to guarantee that the sequence a_{n} will converge?

